Frequent Itemset Mining over Stream Data: Overview

نویسندگان

  • Z. G. Qu
  • X. X. Niu
  • J. Deng
  • C. McArdle
  • X. J. Wang
چکیده

During the past decade, stream data mining has been attracting widespread attentions of the experts and the researchers all over the world and a large number of interesting research results have been achieved. Among them, frequent itemset mining is one of main research branches of stream data mining with a fundamental and significant position. In order to further advance and develop the research of frequent itemset mining, this paper summarizes its main challenges and corresponding algorithm features. Based on them, current related results are divided into two categories: data-based algorithms and task-based algorithms. According to its taxonomy, the related methods belonging to the different categories and sub-categories are comprehensively introduced for better understanding. Finally, a brief conclusion is given.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Review on Algorithms for Mining Frequent Itemset Over Data Stream

Frequent itemset mining over dynamic data is an important problem in the context of data mining. The two main factors of data stream mining algorithm are memory usage and runtime, since they are limited resources. Mining frequent pattern in data streams, like traditional database and many other types of databases, has been studied popularly in data mining research. Many applications like stock ...

متن کامل

Mining Frequent Itemsets Over Arbitrary Time Intervals in Data Streams

Mining frequent itemsets over a stream of transactions presents di cult new challenges over traditional mining in static transaction databases. Stream transactions can only be looked at once and streams have a much richer frequent itemset structure due to their inherent temporal nature. We examine a novel data structure, an FP-stream, for maintaining information about itemset frequency historie...

متن کامل

DELAY-CFIM: A Sliding Window Based Method on Mining Closed Frequent Itemsets over High-Speed Data Streams

Closed frequent itemset mining plays an essential role in data stream mining. It could be used in business decisions, basket analysis, etc. Most methods for mining closed frequent itemsets store the streamlined information in compact data structure when data is generated. Whenever a query is submitted, it outputs all closed frequent itemsets. However, the online processing of existing approache...

متن کامل

An Accelerator for Frequent Itemset Mining from Data Streams with Parallel Item Tree

Frequent itemset mining attempts to find frequent subsets in a transaction database. In this era of big data, demand for frequent itemset mining is increasing. Therefore, the combination of fast implementation and low memory consumption, especially for stream data, is needed. In response to this, we optimize an online algorithm, called Skip LC-SS algorithm [1], for hardware. In this paper, we p...

متن کامل

An Efficient Algorithm for Maintaining Frequent Closed Itemsets over Data Stream

Data mining refers to the process of revealing unknown and potentially useful information from a large database. Frequent itemsets mining is one of the foundational problems in data mining, which is to discover the set of products that purchased frequently together by customers from a transaction database. However, there may be a large number of patterns generated from database, and many of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013